

Figure 1: Euler's problem of the bridges and a suitable graph

1 Principles of Graph Theory

With his problem of the bridges of Königsberg, Leonhard Euler (1707 - 1783) established the mathematical discipline of graph theory. The elements of a graph are vertices and edges. The graph on the right in figure 1 shows four vertices which represent the four regions of mainland and seven edges which represent the seven bridges over the river Pregel.

Definition A.1 A *directed graph* or *digraph* \mathbf{G} is an ordered pair (\mathbf{V}, \mathbf{E}) , where \mathbf{V} is a (finite or denumerably infinite) set of vertices and \mathbf{E} is a set of edges.

The *incidence function*: $\mathbf{E} \to (\mathbf{V} \times \mathbf{V})$ assigns every edge $\mathbf{e} \in \mathbf{E}$ an ordered pair $(\mathbf{u}, \mathbf{v}) \in (\mathbf{V} \times \mathbf{V})$. The pair $\mathbf{e} \equiv (\mathbf{u}, \mathbf{v})$ is called a *directed edge*. We say \mathbf{e} and \mathbf{u} are *incident* and \mathbf{e} and \mathbf{v} are *incident*. We call \mathbf{G} finite, if \mathbf{V} and \mathbf{E} are finite sets.

The two endpoints of an edge (\mathbf{u}, \mathbf{v}) are called *initial endpoint* (tail) $\mathbf{p}_{\text{init}} := \mathbf{u}$ and *terminal endpoint* (head) $\mathbf{p}_{\text{term}} := \mathbf{v}$. In a diagram an arrowhead is placed at \mathbf{p}_{term} . Two edges are called *adjacent* if they have an endpoint in common. Two vertices are called *adjacent* (\sim), if there is an edge which is incident to both. An edge with identical endpoints is called *loop*.

Definition A.2 If every edge of a graph **G** is undirected, i. e. of the form $\{\mathbf{u}, \mathbf{v}\}$, then **G** is called an *undirected graph*.

Definition A.3 A graph is called *simple*, if for any $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ we have

(S1) at most one of the pairs $\mathbf{e} := (\mathbf{u}, \mathbf{v}), \ \bar{\mathbf{e}} := (\mathbf{v}, \mathbf{u}) \text{ or } \mathbf{f} := \{\mathbf{v}, \mathbf{u}\}$ is an element of \mathbf{E} (no *multiple edges*) and

(S2) a pair of the form (\mathbf{v}, \mathbf{v}) or $\{\mathbf{v}, \mathbf{v}\}$ is not an element of **E** (no *loops*).

Definition A.4 An *oriented graph* is a simple directed graph.

Definition A.5 A simple undirected graph is an oriented graph, the orientations of whose edges are abolished, i. e. every edge is a set of the form $\{\mathbf{u}, \mathbf{v}\}$.

On the other hand we get an oriented graph by assigning every edge of an unoriented simple graph a direction. However this is ambiguous. It can be done in $2^{|\mathbf{E}|}$ different ways. Thus there are $2^{|\mathbf{E}|}$ different oriented graphs over the same simple unoriented graph.

Degrees of a vertex A.6 The *degree* $deg(\mathbf{v})$ of a vertex \mathbf{v} is the number of edges that are incident to \mathbf{v} . Loops are counted twice. A vertex of degree 0 is called a *lone vertex*. For every vertex \mathbf{v} of a directed graph we distinguish between its *exit degree* $deg^+(\mathbf{u}) = |\{\mathbf{v}|(\mathbf{u}, \mathbf{v}) \in \mathbf{E}\}|$ and its *initial degree* $deg^-(\mathbf{u}) = |\{\mathbf{v}|(\mathbf{v}, \mathbf{u}) \in \mathbf{E}\}|$.

We have that $d^+(\mathbf{u})$ equals the number of initial vertices in a given graph. Since every directed edge has exactly one initial vertex, this number equals $|\mathbf{E}|$. Similarly $d^-(\mathbf{u}) = |\mathbf{E}|$, since every directed edge has exactly one terminal vertex:

$$\sum_{\mathbf{u}\in\mathbf{V}}\deg^+(\mathbf{u})=\sum_{\mathbf{u}\in\mathbf{V}}\deg^-(\mathbf{u})=|\mathbf{E}|.$$

Lemma A.7 (Handshaking Lemma) In any directed graph G = (V, E):

$$\sum_{\mathbf{u}\in\mathbf{V}}\deg(\mathbf{u})=2|\mathbf{E}|.$$

Corollary A.8 Any directed graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ has an even number of vertices which are of odd degree $\deg(\mathbf{u})$.

