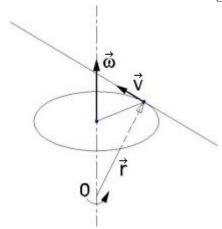
0.0.1 Winkel- und Tangentialgeschwindigkeit

Im Abschnitt ?? haben wir im Zusammenhang mit dem Einheitskreis das Bogenmaß Radiant (rad) kennengelernt. Wir erinnern uns, eine Einheit am Einheitskreis entspricht 1 rad. Für einen Kreis mit Radius $r \neq 1$ gilt demnach, ein Bogen der Länge r am Kreis entspricht 1 rad. In Grad gemessen entspricht 1 rad = $\frac{360^{\circ}}{2\pi} \approx 57,29^{\circ}$, und $1^{\circ} \approx 0,01745$ rad oder $\approx 17,45$ mrad.

Bei einer Kreisbewegung, wie sie z.B. die Erde um ihre Achse ausführt, bezeichnet man die Ableitung des zurückgelegten Bogens θ in rad nach der Zeit t als Winkelgeschwindigkeit ω . Also $\omega = \frac{d\theta}{dt}$ in $\frac{rad}{s}$. Da der Radiant keine anderen Dimensionen enthält, er ist der Quotient zweier Längen, Bogenlänge durch den Betrag des Radiusvektors, sieht man statt $\frac{rad}{s}$ oft auch $\frac{1}{s}$ oder s^{-1} geschrieben.

Abbildung 0.1: Winkelgeschwindigkeit



Wenn man die Winkelgeschwindigkeit ω vektoriell als $\vec{\omega}$ auffaßt, liegt sie in der Drehachse und ist wie ein Korkenzieher orientiert (siehe Abb. 0.1).

Wir haben ein rotierendes System und interessieren uns für die Tangentialgeschwindigkeit eines Punktes mit Ortsvektor \vec{r} . Wir haben

$$v = \omega \|\vec{r}\| \cos(\frac{\pi}{2} - \angle(\vec{\omega}, \vec{r})) = \omega \|\vec{r}\| \sin(\vec{\omega}, \vec{r}).$$

Die Tangentialgeschwindigkeit als Vektor ist somit gegeben durch

$$\vec{v} = \vec{\omega} \times \vec{r}.\tag{0.1}$$

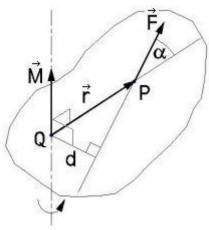
0.0.2 Drehmoment

Wirkt in einem Punkt P eines starren Körpers eine Kraft \vec{F} , dann besteht bezüglich einem Punkt Q ein Drehmoment

 $M=d\|\vec{F}\|,$

wobei d die Länge des Lotes von Qauf die Wirkungslinie von \vec{F} darstellt.

Abbildung 0.2: Drehmoment



In vielen Anwendungen ist es wichtig, das Dremoment als Vektorgröße im Punkt Q senkreckt zu \vec{r} und \vec{F} anzunehmen, wobei \vec{r} ein Vektor vom Punkt Q zum Vektor \vec{F} ist. Da d die Länge der Projektion von \vec{r} auf das Lot zur Wirkungslinie von \vec{F} ist (siehe Abb. 0.2), haben wir $d = \|\vec{r}\| cos(\frac{\pi}{2} - \angle(\vec{r}, \vec{F})) = \|\vec{r}\| \sin(\vec{r}, \vec{F})$. $M = d\|\vec{F}\|$ wird dann $M = \|\vec{r}\| \|\vec{F}\| \sin(\vec{r}, \vec{F})$. Das Drehmoment als Vektor ist deshalb

$$\vec{M} = \vec{r} \times \vec{F}. \tag{0.2}$$